01 Июня 2017

Циркадианные ритмы

foster.jpgНейробиолог Рассел Фостер о цикле «сон – бодрствование», фоточувствительных ганглионарных клетках сетчатки и нарушении суточного ритма

ПостНаука

Циркадианный ритм – это эндогенный биологический ритм с периодом около 24 часов. Самый простой пример – это наш цикл «сон – бодрствование».

Циркадианный ритм нужен, чтобы точно подстраивать все аспекты физиологии и поведения к требованиям 24-часового мира. Он предвосхищает ежедневные изменения в продолжительности светового дня, в температуре, доступности пищи и даже в поведении хищников и заранее готовит организм к изменениям в окружающей среде, чтобы он был полностью адаптирован.

Часовые клетки

Суточные ритмы свойственны почти всем формам жизни, включая одноклеточную жизнь и бактерии. В организме на молекулярном уровне работают циркадианные часы, которые управляют внутренним колебанием, период которого составляет около 24 часов. Это колебание подстраивает внутренний физиологический ритм под внешний 24-часовой цикл. Мы знаем, что заставляет работать внутренние часы: существует несколько важных часовых генов, вырабатывающих часовые белки. Они взаимодействуют между собой, образуя молекулярную петлю обратной связи, которая генерирует в часовых белках колебания с периодом, близким к 24 часам; затем белки сообщают клетке, когда что делать и какое сейчас время дня. Изначально мы думали, что циркадианные ритмы возникают при совместной работе множества разных клеток, образующих единую сеть, но сейчас считается, что это – свойство отдельных клеток.

Чтобы работа циркадианных часов приносила пользу организму, они должны быть подстроены под внешний мир. Самый очевидный пример несоответствия между внутренними часами и внешним миром – джетлаг: когда мы совершаем перелет через несколько часовых поясов, нам нужно подстроить наши внутренние часы под местное время, которое определяется по циклу восхода и заката солнца. Фоторецепторы регистрируют продолжительность фаз света и темноты в цикле и посылают сигналы молекулярному часовому механизму, чтобы подстроить внутренние часы под внешний мир. Люди наиболее чувствительны к суточным изменениям в количестве света и темноты, но некоторые животные, например рептилии, также ориентируются на ежедневные изменения температуры для установления своего биологического ритма. Подстройка под внешний мир, как бы она ни происходила, гарантирует, что в любой час все клетки тела будут совершать нужные процессы в нужное время суток.

В сложных многоклеточных формах жизни часто есть центральные, или «руководящие», часы, которые координируют все остальные. У млекопитающих контрольные часы находятся внутри мозга и называются супрахиазматическое ядро. Оно получает от глаз информацию об уровне света и в соответствии с ней подстраивает работу своих 50 000 нейронов, которые затем посылают множество сигналов, координируя работу остального организма. Чтобы генерировать циркадианный ритм, часовые клетки супрахиазматического ядра используют более 14 различных генов и их белковые продукты.

Основные свойства циркадианных ритмов

Циркадианный ритм – особый тип биологического ритма. Биологический ритм ― это общий термин, описывающий любой ритмический процесс. Некоторые ритмы генерируются внутренними часами, в то время как другие зависят от окружающей среды. Биологический ритм, генерируемый часами, будет оставаться постоянным при постоянном уровне света и температуры. Кроме 24-часовых циркадианных ритмов есть часы, которые идут с периодом в год или 360 дней и называются цирканнуальными ритмами, или «приливные часы», которые были обнаружены у организмов, живущих на берегу моря, ― их биологические часы обладают периодом около 12,8 часов.

Мы знаем о 24-часовых ритмах уже очень давно: еще древние греки говорили о ежедневных изменениях в организме, но они думали, что они обусловлены только изменениями в количестве света и температуре во внешнем мире. Первый научный эксперимент по выявлению циркадианных ритмов был проведен в 1729 году французским ученым и астрономом Жан-Жаком Дорту де Мераном: когда он поставил растение в темное место, он заметил, что в постоянной темноте листья открываются и закрываются с ритмичностью, близкой к 24 часам. Это наблюдение было первым фиксированным указанием на то, что биологические ритмы могут быть заданы изнутри. После этого экспериментов было очень мало, и так продолжалось вплоть до 1950–1960-х годов, когда были открыты реальные свойства циркадианных ритмов.

Первое свойство циркадианного ритма заключается в том, что при постоянных условиях освещенности он остается неизменным. У разных видов период ритма может быть немного длиннее или короче 24 часов: у человека часы немного длиннее, тогда как у мышей немного короче.

Второе ключевое свойство состоит в том, что у этих ритмов есть температурная компенсация. Это означает, что, даже если внешняя температура радикально меняется, 24-часовой ритм не очень сильно ускоряется или замедляется. Это крайне важно, ведь если бы температурной компенсации не было, то циркадианные часы не могли бы точно указывать время.

Третья ключевая особенность – циркадианные ритмы замкнуты на внешний 24-часовой день. Основным сигналом для подстройки ритма является свет, хотя есть и другие сигналы, например, температура.

Некоторые организмы могут настраивать свои часы, опираясь на циркадианное поведение других животных. Например, детеныши мыши устанавливают свои циркадианные ритмы до и после рождения на основании гормональных сигналов своей матери: в матке сигналы поступают в кровь через плаценту, а после рождения – с молоком. Позже, когда аксоны между глазами и супрахиазматическим ядром уже сформированы, мышата могут опираться на уровень света. Происходит ли это у людей так же или нет – мы точно не знаем. Другой пример: малярийные паразиты могут определить время суток по сигналам в крови, и это побуждает их ночью передвигаться к очень близким к коже кровеносным сосудам, где комары подбирают их вместе с кровью. Затем комар кусает другого человека и заражает другую жертву.

Важность рутины

Главный плюс наличия часов состоит в том, что они позволяют организму предвидеть предсказуемые изменения в окружающей среде и заранее подстраивать физиологию и поведение под изменяющиеся условия. Например, если вы знаете, что рассвет будет через три часа, вы можете начать увеличивать уровень метаболизма, температуру тела, мышечную силу и ток крови и в целом настраиваться на активность. Все это готовит вас к тому, чтобы, когда наступит утро, вы были активны и могли полностью использовать новую среду. Если бы для этого мы просто ждали утра, мы бы потратили много времени, приспосабливаясь к новой среде, и в течение этого времени не были бы в состоянии полностью использовать «новые» условия.

Таким же образом в конце дня, когда мы начинаем засыпать, физиология тела начинает снижаться и выключаться, готовя мозг и остальную часть тела ко сну. Во время сна мозг очень занят: создает воспоминания, обрабатывает информацию, чтобы найти новые решения сложных проблем, поручает остальной части тела восстанавливать поврежденные ткани, восстанавливать метаболические пути и организовывать запасы энергии. Некоторые части мозга более активны во время сна, чем во время бодрствования, так что, хотя мы и не двигаемся, мозг невероятно активен, выполняя крайне важные действия, необходимые для следующего дня. Способность предсказывать и предвидеть, а не просто реагировать дает организму огромное селективное преимущество в борьбе за существование.

Некоторые животные и растения также используют циркадианные часы для определения сезона: если организм измеряет ежедневные изменения в количестве темноты и света и если продолжительность темноты увеличивается или уменьшается, то он может очень точно определить время года. В Северном полушарии некоторые млекопитающие используют осеннее увеличение длины ночи как сигнал, что нужно готовиться к зимней спячке, а у других животных, таких как олени и овцы, это может побудить к спариванию: осеннее спаривание означает, что детеныш разовьется в течение зимы и родится весной, когда погода обычно хорошая и есть много новых растений в пищу. Есть млекопитающие, которые изменяют толщину и цвет своего меха, чтобы подготовиться к зиме: например, арктические песцы отращивают к зиме более густой и белый мех, который помогает им камуфлироваться и выживать.

У людей тоже есть сезонная биология. У большинства из нас она не очень заметна, но в целом люди в зимние месяцы часто сообщают о переменах в аппетите и об увеличении веса, а некоторые люди в это время становятся более депрессивными. Каким образом эти изменения возникают, пока еще неясно. Вполне вероятно, что в прошлом мы больше зависели от сезонов, чем сейчас. Отчасти это может быть связано с тем, что теперь мы живем в домах и таким образом защищены от внешнего мира и что сезонные ритмы Земли уже не так резко определены.

Как настроить часы

Большой вопрос: как глаз обнаруживает свет, с помощью которого корректирует циркадианные ритмы? Наша команда недавно открыла тот факт, что глаз содержит специальный набор чувствительных к свету клеток, называемых «фоточувствительные ганглионарные клетки сетчатки» (pRGC). Эти клетки сильно отличаются от колбочек и палочек, которые обнаруживают свет и создают изображение. Они формируются из ганглионарных клеток, аксоны которых выходят из глаза, собираются в зрительный нерв и направляются в мозг. Около 1–2% этих клеток обладают светочувствительным фотопигментом синего цвета, называемым OPN4. Фоточувствительные ганглионарные клетки регистрируют рассвет и закат, а затем устанавливают молекулярные часы на правильное время суток.

Еще одним ключевым открытием стало то, что у незрячих людей, а также у тех, у кого из-за генетических заболеваний колбочки и палочки повреждены, могут быть совершенно нормальные и функциональные фоточувствительные ганглионарные клетки. Таким образом, эти люди слепы, но с точки зрения часового механизма они видят. Это имеет важные последствия для врачебной практики, и офтальмологи должны рекомендовать незрячим пациентам с неповрежденными фоточувствительными клетками получать достаточно света, чтобы правильно настраивать циркадианные ритмы. Офтальмологи теперь понимают, что глаз ― это орган, который дает нам и ощущение пространства (зрение), и ощущение времени (суточная регуляция). Это понимание изменило наше определение слепоты и методы лечения глазных заболеваний.

Важно подчеркнуть, что если у вас вообще нет глаз, то вся подстройка с опорой на свет теряется. Раньше некоторые люди утверждали, что у нас есть фоторецепторы в мозге и даже за коленом, но такие утверждения так и не были подтверждены научными исследованиями. Без глаз большинство из нас будут ложиться спать каждый день примерно на 30 минут позже, чем в предыдущий, так как наш внутренний ритм составляет примерно 24 с половиной, а не ровно 24 часа. Бывают трагические ситуации, когда люди рождаются без глаз или теряют их в результате несчастного случая, и в настоящее время ведутся работы по обеспечению «фармакологической замены» света ― это таблетки, которые обманывают молекулярный механизм, заставляя его думать, что он видит свет, и в результате часы подстраиваются на нужное время.

Также есть еще одна проблема, связанная со светом: мы не получаем его в достаточном количестве в нужное время. Большую часть времени мы проводим в помещении, где свет недостаточно ярок, чтобы мы могли по нему подстроить часы. Для пожилых людей это особенно серьезная проблема, независимо от того, где они живут ― в своем доме или в доме престарелых. Однако когда количество получаемого света увеличивается, можно восстановить внутренние циркадианные ритмы и модель «сон ― бодрствование», в результате чего улучшается функционирование мозга. Также было доказано, что приемы пищи в одно и то же время и даже утренняя зарядка помогают людям поддерживать хороший режим сна.

Циркадианные ритмы и сон

В развитых и все в большей степени в развивающихся странах, где общество живет 24/7, нам остро нужно восстановить правильные модели сна. Наш 24-часовой ритм сна – это наиболее очевидный суточный ритм, который наблюдается у людей и многих животных, но сон – это нечто большее, чем просто часть циркадианной системы. Сон – это очень сложное состояние, созданное несколькими областями мозга, нейромедиаторными системами и модуляторами. Из-за этой сложности сон очень уязвим по отношению к расстройствам. Недавняя работа показала, что нарушения сна и циркадианного ритма (SCRD) являются общими для разных нейродегенеративных и нейропсихиатрических заболеваний, при которых нарушены пути нейромедиаторов. Например, SCRD наблюдается более чем у 80% пациентов с депрессией или шизофренией. Чувствовать сонливость в неподходящее время, конечно, неудобно, но это лишь верхушка айсберга. SCRD также ассоциируется с широким спектром взаимосвязанных патологий, таких как плохое внимание и память, снижение скорости умственных и физических реакций, снижение мотивации, депрессия, бессонница, нарушение обмена веществ, ожирение, иммунные нарушения и даже повышенный риск развития рака. Все они часто наблюдаются как при психических, так и при нейродегенеративных заболеваниях.

Circadian.PNG
Некоторые показатели циркадного ритма человека // wikimedia.org

Мы сильно продвинулись в понимании механизмов, которые генерируют и регулируют циркадианные ритмы и сон, а также в понимании широких проблем со здоровьем, связанных с SCRD. Все это предоставляет нам поистине замечательную возможность работать над тем, чтобы общество понимало все значение сна для здоровья человека. Сон поистине наше лучшее лекарство, а работа в неподходящее время может быть катастрофической – в буквальном смысле. Наш уровень внимания достигает своей низшей точки ранним утром: не случайно такие катастрофы, как Чернобыль и авария танкера «Эксон Вальдез», произошли в ночную смену. Даже с учетом усталости и интенсивности движения в 4 часа утра наблюдается непропорционально много аварий – больше, чем в другое время суток.

Даже если мы не сможем помочь всем людям осознать, что нужно со вниманием относиться ко сну и расставлять приоритеты с учетом всей его важности, то понимание механизмов и путей, которые генерируют и регулируют сон, позволит нам разрабатывать новые методы лечения и лекарства, которые были бы основаны на фактических данных и могли бы улучшить здоровье и качество жизни многих людей с разными болезнями во всем обществе. Потенциальный эффект от того, что мы поможем людям решить их проблемы со сном, огромен, и мы можем это сделать. И очень важно изменить то, что на данный момент в большинстве пятилетних программ обучения в области медицины сон и циркадианные ритмы рассматриваются только в одной-двух лекциях.

Это перевод статьи нашего англоязычного издания Serious Science. Прочитать оригинальную версию текста можно по ссылке.

Об авторе:
Russel Foster – PhD, Head of the Nuffield Laboratory of Ophthalmology and the Sleep and Circadian Neuroscience Institute, Chair of Circadian Neuroscience, Nicholas Kurti Senior Fellow, Brasenose College, University of Oxford

Портал «Вечная молодость» http://vechnayamolodost.ru
 01.06.2017


Нашли опечатку? Выделите её и нажмите ctrl + enter Версия для печати

Статьи по теме