28 Октября 2010

Метилирование ДНК: выключение генов и эпигенетическая наследственность

Белки, регулирующие активность генов в клетке, всегда точно «знают», в какой момент и какой именно ген следует отключить – но откуда? Еще на один шаг к решению этой загадки продвинулись исследователи German Cancer Research Center (оригинал сообщения – в пресс-релизе A Mystery Solved: How Genes Are Selectively Silenced).

Живая клетка – система удивительно стройная и экономичная. В каждый конкретный момент в ней активны лишь те гены, которые сейчас необходимы, остальные же остаются в «выключенном» состоянии. Работа генома напоминает огромный симфонический оркестр, музыканты в котором вступают каждый в нужное время, а когда их партия закончена, опускают инструмент.

Такое «выключение» генов в клетках происходит за счет целого ряда систем и механизмов. Один из важнейших состоит в присоединении к соответствующим участкам ДНК небольших метильных групп. Этот процесс метилирования проводят специальные белки, ДНК-метилтрансферазы, меняя пространственную структуру ДНК. Когда эти ферменты делают свою работу, словно дирижеры, метилированный ген перестает «считываться», на его основе не синтезируется матричная РНК, на основе которой не производится кодируемый геном белок.

Однако в связи с этим возникает уместный вопрос – по формулировке профессора Ингрид Груммт (Ingrid Grummt) – «Одна из важнейших загадок состоит в том, откуда сами метилтрансферазы знают, к каким генам сейчас нужно присоединять метильные группы, чтобы их дезактивировать?» Именно ее команда, кажется, подошла к разгадке этой проблемы.

Исследователи сосредоточили свое внимание на работе тех областей ДНК, которые сами по себе не кодируют белки и, соответственно, не содержат генов. Эту часть генома по традиции называют «мусорной», хотя сегодня ученые все более убеждаются в том, что роль ее огромна – недаром у человека этот «мусор» охватывает до 95% генома. Она, видимо, участвует в правильной упаковке хромосом, стимулирует изменчивость, а в некоторых случаях служит основой для синтеза различных некодирующих РНК (ncRNA). Сами по себе они, как ясно из названия, не содержат никаких инструкций для формирования белков – но выполняют целую кучу других полезных функций. В частности, именно определенные виды ncRNA могут участвовать в регулировке генной активности, хотя эта функция их исследована лишь крайне поверхностно.

Так, Ингрид Груммт с соавторами провела следующий эксперимент. В клетку вносился один вид ncRNA – малая интерферирующая РНК (SiRNA), комплементарная определенному гену в ДНК клетки. Как следствие, SiRNA присоединялась к спирали ДНК, формируя своего рода «тройную спираль». Этот необычный структурный элемент, как было показано учеными, распознавали метилтрансферазы, тут же включавшиеся в дело и выключавшие помеченный SiRNA ген. Осталось решить следующую загадку в цепочке – откуда сами РНК знают, какие гены и в какой момент нужно вывести из игры?..

Метилирование ДНК может служить и основой для своего рода наследственности, не связанной напрямую с генами. Краткое изложение обновленного варианта статьи Georg Fritz et al. Designing sequential transcription logic: a simple genetic circuit for conditional memory из журнала Systems and synthetic biology опубликовано в physics arXiv blog (How Gene Circuits Store).

Одна из самых больших тем современной биологии – вопросы передачи информации по наследству. Помимо генов, состоящих из последовательности нуклеотидов ДНК, в последние годы обнаружены и другие системы т.н. эпигенетической наследственности. К ним относится, например, присоединение метильной группы к цитозину (метилирование ДНК), или модификации работы белков, упаковывающих ДНК в хромосомы (ремоделирование хроматина). Роль и влияние этих «нетипичных» механизмов наследственности остаются предметом интенсивных дискуссий.

Недавно Георг Фритц (Georg Fritz) и его коллеги предложили еще один крайне любопытный механизм в качестве нового элемента эпигенетической наследственности. Известно, что гены никогда не функционируют независимо, они организованы в сложные цепочки: скажем, активность гена А стимулирует ген Б и подавляет В и Г; в свою очередь, подавление В стимулирует Д и так далее. Ученые рассмотрели эти цепочки взаимозависимостей по аналогии с электронными микросхемами, сама организация которых позволяет хранить информацию.

Чтобы проиллюстрировать подход, представим работу обычного «генетического переключателя», системы из двух генов, подавляющих активность друг друга. Существовать эта система может, как выключатель лампы, в двух альтернативных состояниях: ген А активен и производимый им белок ингибирует активность гена Б; либо наоборот, Б через свой белок ингибирует А. Однако то или иное состояние системе задается внешним фактором – третьим белком. Скажем, высокая концентрация этого белка (Х) ведет к активности гена А и посредством него «выключает» ген Б. В этом смысле информация о количествах белка Х сохраняется состоянии системы-генетического переключателя.

Это довольно простая схема, но она может действовать лишь в качестве одного из компонентов куда более сложной сети, способной не только к сохранению, но и даже к некоторой «обработке» входящего сигнала. «Такая память, – поясняют Фритц с коллегами, – может давать клеткам возможность манипулировать и объединять информацию, полученную при разных условиях и в разное время».

По расчетам ученых, подобная «память» может позволить клеткам отвечать на изменения окружающей среды в течение около 30 минут, а сохраненная ими информация – передаваться от материнской клетки к дочерней в течение множества поколений. К сожалению, эта оригинальная работа остается чисто теоретической, и вопрос о том, реально ли существование такого необычного механизма эпигенетической наследственности, остается открытым.

Портал «Вечная молодость» http://vechnayamolodost.ru по материалам журнала «Популярная механика»
28.10.2010

Нашли опечатку? Выделите её и нажмите ctrl + enter Версия для печати

Статьи по теме