17 Февраля 2017

Атомно-силовой микроскоп уместили на чипе

Владимир Королёв, N+1

afm-on-chip1.png
Принцип работы атомно-силового микроскопа.
PZT – пьезоэлектрический сканер, перемещающий образец (Wikimedia Commons).

Инженеры из Университета Техаса и Университета Ньюкасла (Австралия) разработали атомно-силовой микроскоп, полностью умещающийся на небольшом чипе. В качестве активных элементов в нем используются микроэлектромеханические системы. Авторы отмечают, что для сборки системы использовался подход «кремний  на изоляторе» – его масштабируемость может помочь значительно снизить стоимость приборов. Исследование Michael G. Ruppert et al. On-Chip Dynamic Mode Atomic Force Microscopy: A Silicon-on-Insulator MEMS Approach опубликовано в Journal of Electromechanical Systems.

afm-on-chip2.jpg
Фотография атомно-силового микроскопа на чипе.
В ширину снимок охватывает восемь миллиметров. Кантилевер в центре.
(Здесь и ниже рисунки из статьи в Journal of Electromechanical Systems).

Атомно-силовой микроскоп – прибор, изучающий поверхность образца с помощью «ощупывания». Одна из главных его частей – кантилевер, очень острая игла, расположенная на специальной балке. Радиус острия иглы может достигать одного нанометра. Когда игла приближается к поверхности, на нее начинают действовать межмолекулярные силы, что приводит к прогибу балки. По этому прогибу можно определить относительную высоту двух соседних точек образца. Для измерения этой величины на балку светят лазером – она играет роль оптического плеча и любое изменение ее положения в пространстве меняет и то, куда отражается лазерный луч (его положение на фотодиоде).

Разрешение микроскопа определяется тем, как точно он может подвести иглу к нужным точкам. В лучших установках эта точность гораздо меньше размеров атома – это позволяет ощупывать и определять форму электронной оболочки отдельных атомов. Как правило, для этого используют пьезоэлектрические моторы – керамические трубки, удлиняющиеся под действием приложенного напряжения. В целом атомно-силовые микроскопы оказываются очень сложными и дорогостоящими системами.

Авторы новой работы предложили изменить схему работы прибора и миниатюризировать микроскоп. Ученые предложили использовать в качестве основы кремниевые МЭМС-устройства, изготавливаемые по технологии «кремний  на изоляторе». Эта технология совместима с массовым производством и использует фотолитографические техники.

Устройство, созданное авторами, состоит из тех же принципиальных частей, что и «большие» зондовые микроскопы. В роли пьезоэлектрических моторов в нем выступают электростатические актюаторы:  пары проводящих гребенок, притягивающихся друг к другу под действием приложенного напряжения. Две пары таких актюаторов обеспечивают ошибку позиционирования иглы всего в 16 нанометров. Для раскачивания самой иглы, требуемого для сканирования в теппинг-моде («постукивание» образца) используется тонкий слой пьезоэлектрика на балке кантилевера. Его же использовали для анализа механического состояния балки (амплитуды колебаний и так далее) и оценки высоты поверхности. Инженерам удалось успешно использовать созданный микроскоп для анализа поверхности.

afm-on-chip3.jpg
Внешний вид микроскопа

Авторы отмечают, что микроэлектромеханические актюаторы позволяют использовать для сканирования поверхности не только стандартные траектории (построчное сканирование), но и более сложные, например, спирали или фигуры Лиссажу. Это может увеличить скорость сканирования образцов.

Атомно-силовая микроскопия активно используется в материаловедении, медицине и многих других технических дисциплинах. Например, с ее помощью ученые научились диагностировать рак, собирать молекулы с помощью манипуляции одиночными атомами, рисовать электрические схемы на графене и управлять лазерами. Благодаря атомно-силовому микроскопу, расположенному на борту космического аппарата «Розетта» физики узнали о строении пыли комет.

Портал «Вечная молодость» http://vechnayamolodost.ru
 17.02.2017


Нашли опечатку? Выделите её и нажмите ctrl + enter Версия для печати

Статьи по теме