Безопасные индуцированные плюрипотентные стволовые клетки
Предохранитель ИПСК
- биомолекула: «Нобелевская премия по физиологии и медицине (2012): индуцированные стволовые клетки»;
- Milhavet O., Lemaitre J.M. (2014). Senescent-derived pluripotent stem cells are able to redifferentiate into fully rejuvenated cells. Tumor Dormancy, Quiescence, and Senescence. 2, 265–276;
- биомолекула: «Французским исследователям удалось омолодить клетки столетних людей»;
- Inoue H., Nagata N., Kurokawa H., Yamanaka S. (2014). iPS cells: a game changer for future medicine. EMBO J. 33, 409–417;
- Frobe J., Hemeda H., Lenz M., Abagnale G., Joussen S., Denecke B. et al. (2014). Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Reports. 3, 414–422;
- Diederichs S. and Tuan R.S. (2014). Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor. Stem Cells Dev. 23, 1594–1610;
- Neofytou E., O’Brien C.G., Couture L.A., Wu J.C. (2015). Hurdles to clinical translation of human induced pluripotent stem cells. J. Clin. Invest. 125, 2551–2557;
- Ohnishi K., Semi K., Yamamoto T., Shimizu M., Tanaka A., Mitsunaga K. et al. (2014). Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell. 156, 663–677;
- Makarev E., Fortney K., Litovchenko M., Braunewell K.H., Zhavoronkov A., Atala A. (2015). Quantifying signaling pathway activation to monitor the quality of induced pluripotent stem cells. Oncotarget. 6, 23204–23212;
- Masuda S., Miyagawa S., Fukushima S., Sougawa N., Okimoto K., Tada C. et al. (2015). Eliminating residual iPS cells for safety in clinical application. Protein Cell. 6, 469–471;
- Rodrigues G.M.C., Rodrigues C.A.V., Fernandes T.G., Diogo M.M., Cabral J.M.S. (2015). Clinical-scale purification of pluripotent stem cell derivatives for cell-based therapies. Biotechnol. J. 10, 1103–1114;
- Tateno H., Onuma Y., Ito Y., Minoshima F., Saito S., Shimizu M. et al. (2015). Elimination of tumorigenic human pluripotent stem cells by a recombinant lectin-toxin fusion protein. Stem Cell Reports. 4, 811–820;
- Malecki M. (2014). ’Above all, do no harm’: safeguarding pluripotent stem cell therapy against iatrogenic tumorigenesis. Stem Cell Res. Ther. 5, 73;
- Kumazaki T., Takahashi T., Matsuo T., Kamada M., Mitsui Y. (2014). Re-emergence of undifferentiated cells from transplants of human induced pluripotent stem cells as a possible risk factor of tumourigenesis. Cell Biol. Int. Rep. 21, 17–24;
- Kamada M., Mitsui Y., Matsuo T., Takahashi T. (2015). Reversible transformation and de-differentiation of human cells derived from induced pluripotent stem cell teratomas. Hum. Cell. 28, 1–9;
- Nori S., Okada Y., Nishimura S., Sasaki T., Itakura G., Kobayashi Y. et al. (2015). Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Reports. 4, 360–373;
- Ruiz S., Lopez-Contreras A.J., Gabut M., Marion R.M., Gutierrez-Martinez P., Bua S. et al. (2015). Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells. Nat. Commun. 6, 8036;
- Hara A., Aoki H., Taguchi A., Niwa M., Yamada Y., Kunisada T., Mori H. (2008). Neuron-like differentiation and selective ablation of undifferentiated embryonic stem cells containing suicide gene with Oct-4 promoter. Stem Cells Dev. 17, 619–628;.
- Rong Z., Fu X., Wang M., Xu Y. (2012). A scalable approach to prevent teratoma formation of human embryonic stem cells. J. Biol. Chem. 287, 32338–32345;
- Naujok O., Kaldrack J., Taivankhuu T., Jörns A., Lenzen S. (2010). Selective removal of undifferentiated embryonic stem cells from differentiation cultures through HSV1 thymidine kinase and ganciclovir treatment. Stem Cell Rev. 6, 450–461;
- Yagyu S., Hoyos V., Del Bufalo F., Brenner M.K. (2015). An Inducible Caspase-9 suicide gene to improve the safety of therapy using human induced pluripotent stem cells. Mol. Ther. 23, 1475–1485;
- Di Stasi A., Tey S. K., Dotti G., Fujita Y., Kennedy-Nasser A., Martinez C. et al. (2011). Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683;
- Barese C.N., Felizardo T.C., Sellers S.E., Keyvanfar K., Di Stasi A., Metzger M.E. et al. (2015). Regulated apoptosis of genetically modified hematopoietic stem and progenitor cells via an inducible caspase-9 suicide gene in rhesus macaques. Stem Cells. 33, 91–100;
- Straathof K.C., Pulè M.A., Yotnda P., Dotti G., Vanin E.F., Brenner M.K., Heslop H.E. et al. (2005). An inducible caspase 9 safety switch for T-cell therapy. Blood. 105, 4247–4254.